19 de nov. de 2010

Equipe de cientistas usa vírus para converter metano em etileno

Uma equipe de biólogos moleculares e cientistas da matéria afirmou ter projetado geneticamente um vírus para converter metano em etileno, de forma mais eficiente e em temperaturas significativamente mais baixas do que era possível anteriormente. Caso eles consigam comercializar o novo material, isso anunciará a chegada de um conjunto de novas tecnologias representando a síntese da biologia molecular e da química industrial.
O etileno, um gás com odor tipicamente doce que pode ter gerado percepções ao Oráculo de Delfos, é amplamente usado na fabricação de plásticos, solventes e fibras, e é parte essencial para uma série de produtos industriais ou de consumo. Mas ele ainda é produzido pela quebra de vapor, um processo industrial caro, que exige altas temperaturas e intensa energia, desenvolvido no século 19. Nesse processo, hidrocarbonetos encontrados no petróleo bruto são quebrados numa cadeia de compostos químicos mais simples. A busca por abordagens mais eficientes e menos caras à produção de etileno já ocorre há mais de três décadas e, mesmo com alguns progressos, até agora nenhuma técnica nova se mostrou comercialmente viável.
Agora, pesquisadores da Siluria Technologies, uma nova empresa do Vale do Silício estabelecida aqui, estão relatando progressos em comercializar uma abordagem baseada na nanociência para a produção de etileno. Sua técnica para produzir etileno depende da habilidade de um vírus, geneticamente projetado, de se revestir com um metal que serve como catalisador para uma reação química produtora de etileno.
A chave é que o vírus consegue criar um “entrelaçamento de nanofios catalisadores revestidos” – os pesquisadores chamam isso de bola de pelos -, que proporciona uma área de superfície tão grande para a ocorrência de reações químicas, que a energia necessária para produzir essas reações é imensamente reduzida.
O processo básico, ou reação química, conhecido como união oxidante de metano, foi uma área de intensas pesquisas para a indústria petroquímica incipiente no final dos anos 1980. Pesquisadores obtiveram algum sucesso, mas nunca conseguiram um aprimoramento suficiente em eficiência de energia para justificar o fim do processo tradicional de quebra de vapor.
A empresa Siluria, com suas bolas de pelo de nanofios revestidos com um óxido de metal não especificado (eles não dizem qual é o metal, mas o descrevem como similar ao óxido de magnésio), alega ter conseguido criar reações produtoras de etileno a temperaturas de 100 a 150 graus mais baixas do que as atingidas anteriormente, segundo Erik Scher, químico que é um dos pesquisadores da empresa.
O trabalho é baseado numa técnica de desenvolvimento genético de vírus, criada por Angela Belcher, que lidera o Grupo de Materiais Biomoleculares no MIT (Instituto de Tecnologia de Massachusetts). A técnica envolve a manipulação dos genes de um vírus, neste caso um que geralmente ataca bactérias, de forma que ele colete e se encape com materiais inorgânicos ¿ como metais e nanotubos de carbono.
Os vírus podem ser usados para criar um denso entrelaçamento de nanofios de metal, e as potenciais aplicações para esses materiais são incrivelmente diversas. O laboratório de Belcher está trabalhando em pesquisas sobre baterias e células solares mais eficientes, biocombustíveis, separação de hidrogênio e outras tecnologias de células de combustíveis, sequestro de carbono, diagnósticos de câncer e abordagens terapêuticas, além de um esforço para criar um catalisador que possa converter etanol em hidrogênio em temperatura ambiente.
No ano passado, o laboratório publicou um artigo, na revista Science, que descrevia o uso de um vírus para sintetizar nanofios de óxido de cobalto em temperatura ambiente, visando aprimorar a capacidade de baterias pequenas e flexíveis de íon lítio. Em abril, os pesquisadores do MIT desenvolveram um vírus para imitar a fotossíntese e produzir hidrogênio em temperatura ambiente ao separar moléculas de água.
Belcher afirmou que seu objetivo não era a comercialização das potenciais novas tecnologias projetadas por ela. “Nós pensamos: Qual é o problema que precisa de solução?, e caminhamos nessa direção”, afirmou ela.
Por outro lado, os pesquisadores da Siluria declararam que seus avanços em desenvolver catalisadores é o passo mais significativo para comercializar a técnica bacteriófaga.
“Estamos aprendendo com a natureza, mas indo a novos lugares da tabela periódica e trabalhando com as mesmas ferramentas e técnicas de uso de materiais com que a natureza não trabalhou”, disse Alex Tkachenko, biólogo molecular e co-fundador da Siluria.
“O que mudou hoje”, explicou Tkachenko, “é que a tecnologia biossintética de Angie permite que cultivemos esses catalisadores de maneira sintética, em formatos inovadores – nanofios – que, por sua vez, nos permitem criar morfologias únicas de superfícies”. Os pesquisadores reconhecem ainda não possuir uma compreensão científica completa do comportamento da superfície em seu novo catalisador. David Wells, investidor do mercado de ações, montou a Siluria graças ao trabalho que havia presenciado no laboratório de Belcher.
“Estas são as próximas gerações que evoluirão para materiais e sistemas, algo que nem conseguimos imaginar atualmente”, disse Mehmet Sarikaya, diretor do Centro de Engenharia e Ciência de materiais Geneticamente Desenvolvidos, na Universidade de Washington.
O laboratório de Sarikaya está realizando pesquisas similares na criação de materiais, como proteínas e peptídeos menores que conseguem imitar processos biológicos.

Infecção pelos vírus da Dengue em monócitos/macrófagos: efeitos na expressão de citocinas

Pesquisador Principal: Dra. Maria Isabel Liberto


Os monócitos/macrófagos (MO/Mf) são as principais células produtoras dos vírus da Dengue. Autores demonstraram a influência de citocinas liberadas por MO/Mf (monócitos/macrófagos), infectados pelos vírus da Dengue, sobre as populações de células endoteliais e hematopoiéticas. Portanto, as interações dos vírus da Dengue com MO/Mf devem ter um papel fundamental na patogênese da doença . Culturas primárias de MO/Mf obtidas a partir de sangue total humano, são susceptíveis à infecção pelos vírus da dengue tipo 2, secretando várias citocinas e quimiocinas. Níveis séricos elevados de certas citocinas estão presentes durante a infecção por esse tipo de vírus, portanto, é importante investigar as citocinas liberadas pelos MO/Mf infectados. O projeto visa amplificar, purificar e caracterizar, antigênica e molecularmente, as amostras de vírus da Dengue propagadas em culturas de MO/Mf; caracterizar as preparação purificadas, por microscopia eletrônica, título infeccioso, teor protéico e relação partícula/PFU e analisar a indução de interferons e de outras citocinas durante as infecções produtivas e abortadas.

8 de nov. de 2010

Briófitas

Briófitas são vegetais, na maioria terrestres, apresentando características que as separam das algas e das plantas vasculares. Seus gametângios são pluricelulares, com uma camada estéril (epiderme) que protege as células sexuais da dessecação, sendo esta uma adaptação à vida no ambiente terrestre. Em algumas, possuem células especializadas para a condução de água (hidróides) e de elementos fotossintetizados (leptóides). O corpo vegetativo é trófico corresponde ao gametófito haplóide (n), sendo que o esporófito diplóide (2n) cresce sobre este e tem vida efêmera. São vegetais relativamente pequenos, habitando ambientes mésicos, xéricos e higrófilos, tendo alguns representantes aquáticos continentais. Crescem em uma variedade de substratos, naturais ou artificiais, sob diversas condições microclimáticas. Abrigam vasta comunidade biótica, como pequenos animais, algas, fungos, mixomicetos, cianobactérias e protozoários. Propiciam condições, em muitos ambientes, para o desenvolvimento de plantas vasculares devido à capacidade de reter umidade.

Características básicas:

• Possuem clorofila a e b;

• Possuem amido como polissacarídeo de reserva;

• As células possuem parede (composta por celulose);

• Presença de cutícula;

• Ciclo de vida diplobionte heteromórfico, esporófito parcial ou completamente dependente do gametófito;

• Reprodução oogâmica;

• Esporófito não ramificado, com um único esporângio terminal;

• Gametângio e esporângios envolvidos por camada de células estéreis.

Morfologia

As briófitas são diplobiontes, apresentando alternância de gerações heteromórfica entre gametófito ramificado, fotossintetizante e independente e esporófito não ramificado e ao menos parcialmente dependente do gametófito. A partir da meiose ocorrida em estruturas especiais do esporófito surgem os esporos que ao germinarem originam os gametófitos. Os esporos podem originar diretamente a planta que produzirá as estruturas reprodutivas, normalmente ereta ou originar primeiro um fase filamentosa, com filamento unisseriado, ramificado, com paredes transversais oblíquas ao eixo longitudinal (protonema), que dará origem a parte ereta. Os gametófitos podem ser divididos em rizóides, filídios e caulídios. Os mais simples não apresentam diferenciação entre filídio e caulídio e geralmente são prostrados, sendo denominados talosos, enquanto aqueles onde onde se distinguem essas estruturas, normalmente eretos, são denominados folhosos. No ápice dos gametófitos surgem estruturas de reprodução características, denominados arquegônios, onde se diferencia o gameta feminino (oosfera) e anterídios, onde se diferenciam os gametas masculinos (anterozóides). Nas briófitas o zigoto germina sobre a planta mãe e o esporófito resultante permanece ligado a ela durante toda a sua vida, apresentando dependência parcial ou total. Os Esporófitos nunca são ramificados e apresentam diferentes graus de complexidade segundo o grupo a que pertencem, podendo ser divididos em pé, seta e cápsula. O pé apresenta-se imerso no tecido do gametófito e é responsável pela absorção de substâncias. Sustentado pela seta encontra-se o esporângio terminal, denominado cápsula, apresentando um envoltório de tecido externo com função de proteção, sendo os esporos diferenciados por meiose a partir de camadas internas (tecido esporógeno). Em certos casos, quando a cápsula apresenta deiscência transversal, observa-se um opérculo que se destaca para permitir a passagem dos esporos. A cápsula pode estar parcial ou totalmente coberta pela caliptra que é formada por restos do tecido do arquegônio transportados durante o desenvolvimento do esporófito, e fornece uma proteção adicional. O esporófito, embora sempre dependente do gametófito pode, em certas classes de Bryophyta (Anthocerotae e Musci), realizar fotossíntese, ao menos durante o início do seu desenvolvimento.

Reprodução

As briófitas podem apresentar três tipos de reprodução:

1. Gamética: Em condições adequadas de umidade, os anterozóides pequenos e biflagelados são liberados pelo rompimento da parede do anterídio, enquanto as células do canal do arquegônio rompem-se, liberando um fluido que direciona os anterozóides até a oosfera, havendo então a fecundação;

2. Espórica: A liberação dos esporos ocorre através de movimentos higroscópicos dos dentes do peristômio. Esses movimentos são devidos a variação da umidade do ar;

3. Vegetativa - 4 formas de reprodução:

• Fragmentação: desenvolvimento de fragmentos do talo em outro indivíduo.

• Gemas (ou propágulos): estruturas especialmente diferenciadas, com forma definida, que darão origem a um novo indivíduo. As gemas são produzidas dentro de estrutas em forma de taça denominadas conceptáculos.

• Aposporia: desenvolvimento do esporófito em gametófito sem que ocorra meiose. Normalmente ocorre a partir de um fragmento da seta cuja regeneração origina um gametófito. Pode resultar na formação de organismos poliplóides.

• Apogamia: desenvolvimento do gametófito em esporófito sem que haja fecundação. Pode ocorrer não apenas a partir de gametas, mas também de filídios ou do própio protonema.


Classificação

Na antigüidade, o termo "muscus" era utilizado por estudiosos gregos e romanos englobando, além das briófitas propriamente ditas, os líquens e algumas algas, plantas vasculares e mesmo invertebrados. Embora na Renascença alguns autores tenham estudado gêneros de interesse médico, Dillenius (1741) em sua obra "Historia Muscarum" foi o primeiro autor a estudar esses organismos de forma mais compreensiva. No entanto, o trabalho interpreta erroneamente a cápsula (esporângio) como antera e os esporos como grãos de pólen. Em função disso, Linnaeus (1753) em "Species Plantarum" classifica as briófitas como próximas a angiospermas. A interpretação correta das estruturas encontradas nesses vegetais, não apenas referntes ao esporófito, mas também ao ciclo de vida, a função de anterídios e arqugônios foi dada por Hedwig (1801), permitindo o estabelecimento de bases mais corretas para sua classificação. Atualmente briófitas são separadas pela maioria dos autores em 3 classes, Hepaticae, Anthoceotae e Musci (eg. Schofield, 1985). Outros autores tratam essas 3 classes como Divisões.

• Classe Hepaticae: hepatos (grego)-fígado. É constituída por cerca de 300 gêneros e 10.000 espécies;

• Classe Anthocerotae: anthos (grego)-flor. É constituída por apenas 4 gêneros e 300 espécies;

• Classe Musci: muscus (latim)-musgo. É constituída por cerca de 700 gêneros e 14.000 espécies.

2 de nov. de 2010

Futebol


 


O PAPEL DO SNC NA FORMAÇÃO DE CRAQUES

No futebol moderno só entra em campo o profissional treinado, alimentado, moldado, conscientizado para superar os limites de velocidade, agilidade, fôlego e potência do chute. Foi-se o tempo que o esporte era conhecido apenas pela garra e talento dos atletas naturalmente bem dotados.
Hoje, jogadores com visão de jogo e que dominam a bola devem ter essas qualidades somadas à habilidade de correr atrás do adversário como “felino” e de evitar ser derrubado por um “safanão”. E por isso é necessário que se desenvolva fisicamente um jogador técnico, para que ele não seja anulado por um atleta não-técnico que tenha preparo físico.
No processo de formação do jogador técnico, vários sistemas corporais estão envolvidos. Analisaremos, aqui, o envolvimento do sistema nervoso central (SNC) nesse processo de formação.

O nível mais alto, representado pelas áreas de associação do neocórtex e pelos gânglios basais do encéfalo (núcleo caudado, Putamen, núcleo Pálido), está envolvido com a estratégia: a finalidade e a estratégia do movimento que melhor atinge a meta. O nível Intermediário, representado pelo córtex motor e pelo cerebelo, está relacionado com a tática: as seqüências de contrações musculares, arranjadas no espaço e no tempo, necessárias para ativar, de forma suave e acurada, a meta estratégica. O nível mais baixo, representado pelo tronco encefálico e pela medula espinhal, guarda relação com a execução: ativação do neurônio motor e de conjuntos de interneurônios (neurônios de associação) que geram o movimento direcionado à meta e faz qualquer ajuste postural que seja necessário.



 




Para avaliar as diversas contribuições dos três níveis hierárquicos ao movimento, considere as ações de um atacante-cobrador de pênalti parado em frente ao gol, pronto para lançar a bola. Com base na visão, audição, sensação exata acerca de onde o corpo está no espaço, estratégias devem ser delineadas para mover o corpo do estado atual para um outro, no qual o lançamento é realizado e o efeito desejado obtido. Várias opções – um lançamento curvo, um lançamento rápido, um lançamento articulado, entre outros – estão disponíveis, e essas alternativas são filtradas através dos gânglios basais e de volta ao córtex até que a decisão seja tomada baseada, em grande parte, na experiência. As áreas motoras do córtex e do cerebelo tomam, então, a decisão tática (jogar a bola ao gol) e enviam instruções para o tronco encefálico e para a medula espinhal. A ativação de neurônios no tronco e na medula levam, então, à execução do movimento. A ativação, em tempo apropriado, de neurônios motores (motoneurônios) na região lombar, gera um movimento coordenado da coxa, perna e pés, enquanto ajustamentos posturais na região cervical e torácica evitam que o jogador caia durante o lance.
Enquanto isso, neurônios motores do tronco encefálico do goleiro são ativados para manter seus olhos fixos na posição do atacante, enquanto seu corpo e sua cabeça se movem

Hierarquia do controle motor





De acordo com as leis da física, o movimento de uma bola arremessada no espaço é balístico, isto é, uma trajetória que não pode ser alterada. O movimento do jogador quando lança a bola também pode ser descrito como balístico, pois uma vez iniciado não pode ser alterado.
Informações sensoriais antes do movimento ser iniciado são essenciais para determinar a posição inicial dos membros inferiores e do tronco e para antecipar qualquer mudança na resistência durante o arremesso da bola. E informação sensorial durante o movimento também é importante – não necessariamente para o movimento que está sendo executado, mas para melhorar movimentos similares subseqüentes.
No nível mais alto, a informação sensorial gera uma imagem mental do corpo e sua relação com o ambiente. No nível intermediário, as decisões táticas são baseadas nas memórias das informações sensoriais de movimentos passados. No nível mais baixo, a retroalimentação sensorial é utilizada para manter a postura, a extensão muscular e a tensão antes e após cada movimento voluntário.
À medida que as hierarquias sensoriais atingem um pico, também começam a convergir. Em áreas especiais, como o hipocampo, os neurônios começam a disparar, em resposta a combinações de ruídos, visões, cheiros e outras sensações. Mas o hipocampo não espera que todas as informações cheguem de uma só vez para decidir responder. Vai soltando mensagens a cada pedaço de informação ou sensação. O disparo do hipocampo faz prestar atenção a outras imagens, Ele reflete o fato de que certos detalhes existem, espalhados pelo resto do circuito sensorial.Em conseqüência, dispara novamente.
Resumindo, a informação inicial leva à formação de uma resposta cerebral, que é usada para dirigir a atenção e coletar mais informações, que novamente são enviadas ao cérebro. Esse processo permite que o hipocampo seja um órgão de memória, já que toda conexão sináptica é moldada por experiência. O hipocampo está posicionado para reter memórias específicas, capturar determinada imagem ou estado sensorial e, então, usar essa informação horas ou mesmo anos depois para reconstruir um momento.
Os mais alto níveis do cérebro são as cerca de 12 áreas de processamento que formam os lobos frontais. Tais áreas processam o que é significativo e merece análise mais profunda (e não rotineiro).
Quando um pedaço da atividade visual, que tem a forma de uma bola, por exemplo, atinge essa parte do cérebro, uma experiência nítida pode começar a se manifestar.
Agindo em comum acordo com os centros da excitação e emoção do cérebro inferior, com os quais têm conexões íntimas, os lobos pré-frontais entram em estado de alerta. Presta atenção tem o efeito de definir a experiência sensorial. O córtex sensorial começa respondendo ao panorama maior – a bola – e depois a outras imagens. A atenção retorna a tudo para criar contraste. Aumenta o “volume” dos neurônios que representam a bola e empurra detalhes irrelevantes, como a presença do juiz ou colegas de time para a periferia da percepção.
Essa é uma das vantagens de o cérebro funcionar mais como rede orgânica de conexões do que como dispositivo de entrada e saída. As áreas de “saída” podem voltar para trás a fim de alterar as próprias entradas. Qualquer entrada começa com uma sugestão: “Ei, posso ser importante!” Muitas são analisadas, e eventualmente pode haver uma resposta do tipo: “Sim, você era o pedaço que interessava”. As vias do cérebro desenvolvem uma solução.
Quando se fixa a atenção em certo detalhe ocorre um enorme fluxo de pensamentos, emoções e associações. A totalidade do cérebro é preparada para responder ao evento focal com todos os recursos disponíveis. Portanto, perceber a visão da bola traz à superfície associações mentais armazenadas. Mesmo no momento em que o jogador reconhece a bola, pensamentos relevantes começam a efervescer dentro dele. Existe adversário na vizinhança? Devo levar a bola até o gol ou dar passe? Os centros de excitação irão tomar decisões sobre preparar o corpo para a ação. As áreas motoras, atrás das regiões pré-frontais na lâmina do córtex frontal, estarão engrenando para executar intenções que começam a se formar.
O cérebro aprende a totalidade de cada movimento e extrai (responde também) o aspecto central.
Bons jogadores de futebol precisam de reflexos incríveis. No jogo profissional, um chute potente pode fazer a bola rolar a mais de 200 Km por hora e entrar na rede em 1/3 de segundo. Mal dá tempo para um principiante enxergar a bola. Mas os melhores jogadores conseguem ver a bola nitidamente para se lançar ao ataque e ainda driblar o adversário com uma precisão de fração de segundo.
Apesar de parecer que o sistema nervoso trabalha à velocidade de um raio, não é bem assim. Mesmo conduzindo sinais a várias centenas de quilômetros por hora, os nervos necessitam de tempo para transformar entrada em saída. Leva ao menos 20 milésimos de segundo para as mensagens percorrerem o comprimento do corpo. Os sinais visuais levam em torno de 50 a 100 milésimos de segundo para chegar ao cérebro. Uma vez dentro dele, outras conexões são necessárias para transformar sinais brutos em resposta mental. Totalize esses atrasos e seria impossível acompanhar uma bola indo diretamente ao gol.
De fato, experimentos laboratoriais mostram quanto tempo o cérebro leva para integrar novas informações. Quando se pede jogadores iniciantes que chutem a bola assim que a luz pisca, eles levam 200 milésimos de segundo, 1/5 de um segundo. Cerca de 120 milésimos de segundo são necessários para registrar o fato de que a luz piscou e outros 80 para dar o chute. Esse tempo é necessário para uma simples tarefa que não exige pensamento. Para qualquer outra que requer atenção, o atraso da resposta fica próximo de meio segundo.
O cérebro de profissionais treinados simplifica o problema gastando o menor tempo possível.
Para subir e descer até o fim da hierarquia de processamento, a resposta mental leva meio segundo. Criar pontes entre centenas de áreas corticais exige trabalho. O cérebro pode criar atalhos nessa resposta e reagir fora dos padrões, cortando o tempo de processamento de 500 milésimos de segundo para apenas 200. Existem estruturas cerebrais especializadas nesse trabalho. Um agrupamento de centros nervosos, os gânglios basais, abriga-se dentro dos hemisférios cerebrais, “observando” silenciosamente os padrões de atenção e a tomada de decisões na lâmina cortical acima. Em vigilância, os gânglios basais começam a ver quais padrões sensoriais produzem mais tarde determinada resposta. Eles poderão fazer, literalmente, um curto-circuito para a produção daquele estado de saída. Assim que o tipo certo de sensação começa a chegar, os gânglios basais poderão disparar a mesma resposta de maneira imediata, sem pensar. A tarefa será feita como se o cérebro superior tivesse ponderado cuidadosamente a sua resposta. Esse é um truque inteligente para poupar tempo, que funciona quando o cérebro experimenta a mesma situação em ocasiões suficientes para conseguir uma conexão na forma de hábito. Isso vai reverter em um padrão de ação fixa ou automatismo. Mas tal atalho só reduz o atraso na resposta de meio segundo para 1/5 de segundo.
Os “cérebros” antecipam, ficam craques em adivinhar. Podem supor que cada novo momento será parecido com o anterior. Mesmo que exista surpresa, aquilo que o cérebro registrou um segundo atrás continuará sendo verdadeiro no futuro, gerando expectativas sobre o que virá.
Os gânglios basais não são a única parte do cérebro que vigia as atividades do córtex e aprende com elas. O cerebelo é um órgão especializado no ajuste fino do encadeamento temporal dos movimentos. O cerebelo responde por apenas 1/10 do volume do cérebro, mas contém bem mais da metade de seus neurônios; possui muito mais células nervosas que o córtex “inteligente”. Um neurônio do cerebelo faz 20 vezes mais conexões sinápticas, quase 200 mil, em comparação com cerca de 10 mil, para um neurônio cortical mediano.
O cerebelo usa alças de processamento muito simples, perfeitas para a sincronia das ações, e não para formar um quadro complexo da consciência. Esta é a tarefa do córtex, com suas conexões ramificadas e seus mapas sensoriais.
É certamente assim que os atletas competem. Agem sobre previsões. Experimentos mostram que os goleiros profissionais conseguem adivinhar a direção da bola em um pênalti, observando apenas o movimento do atacante. O primeiro instante do vôo da bola é suficiente para extrapolar toda sua trajetória. Caso a bola voe de maneira imprevisível a menos de 200 milésimos de segundo, não haverá tempo para ajustes. O goleiro irá girar o corpo segundo uma previsão errada. Resultado: perderá a bola. Os profissionais lêem o jogo, contam com a antecipação. Nós fazemos exatamente o mesmo para lidar com situações corriqueiras.

fonte: AFH